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Narrowly avoided crossings 
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USA 

Received 15 April 1986 

Abstract. In order to create a degeneracy in a quantum mechanical system without 
symmetries we must vary two parameters in the Hamiltonian. When only one parameter, 
A say, is vaned, there is only a finite closest approach AE of two eigenvalues, and never 
a crossing. Often the gaps AE in these avoided crossings are much smaller than the mean 
spacing between the eigenvalues, and it has been conjectured that in this case the gap 
results from tunnelling through classically forbidden regions of phase space and decreases 
exponentially as h -0: A €  = A  e-’’’. 

This paper reports the results of numerical calculations on a system with two para- 
meters, E ,  A, which is completely integrable when E = O .  It is found that the gaps AE 
obtained by varying A decrease exponentially as h - 0, consistent with the tunnelling 
conjecture. When E = 0, A €  = 0 because the system is completely integrable. As E + 0, the 
gaps do not vanish because the prefactor A vanishes; instead it is found that S diverges 
logarithmically. Also, keeping h fixed, the gaps are of size PE = O ( E ” ) ,  where U is usually 
very close to an integer. Theoretical arguments are presented which explain this result. 

1. Introduction 

Consider a quantum mechanical system with a Hamiltonian fi which depends on a 
parameter A. If fi has a discrete spectrum, we can plot the eigenvalues Ej of fi as a 
function of A. Naively we might expect to see the curves E j ( A )  cross each other, as 
illustrated in figure l ( a ) .  This is in conflict with a result of von Neumann and Wigner 
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Figure 1. By varying a parameter A in the Hamiltonian, we might expect to be able to 
make energy levels degenerate ( a ) .  In fact this does not happen for Hamiltonians without 
symmetry, and instead we observe an avoided crossing ( b ) .  Often the gaps AE in these 
avoided crossings are orders of magnitude smaller than the mean separation of energy levels. 
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(1929), who proved that in systems without any symmetry we have to vary two 
parameters in order to create a degeneracy. When only one parameter is varied, there 
is a finite closest approach AE, of the eigenvalues E, and E,,, rather than a degeneracy. 
This avoided crossing is illustrated in figure l (b) .  

Often the gaps b E ,  of the avoided crossings are orders of magnitude smaller than 
the mean value of the level separation, E,,, - E,. This can be explained by the following 
argument. Assume that the classical Hamiltonian which corresponds to the quantum 
system has trajectories which are confined to tori in phase space. The KAM theorem 
suggests that most systems have some of these phase space tori. The quantum energy 
levels associated with phase space tori can be calculated by the Einstein-Brillouin- 
Keller ( E B K )  quantisation scheme: if H ( Z )  is the Hamiltonian as a function of the 
action variables I then the quantum eigenvalues are given by 

E, = H(I.1 I ,  = 2 7 r ( n + f a ) h  

where the vector LY has constant integer elements called Maslov indices (Berry 1983). 
The EBK quantisation scheme predicts that energy levels can cross, as illustrated in 
figure t (a ) ,  but since it is only an asymptotic scheme, and not exact, we still expect 
to see the degeneracies split by a finite amount, as in figure l (b) .  It is possible, however, 
to write down corrections to the E B K  quantisation scheme to any order in h, and these 
corrections will depend only on the properties of a single torus I. These corrections 
cannot therefore be used to calculate AE, so that the splitting must vanish faster than 
any power of h as h + 0. This explains the very small values of A E  which have been 
observed in numerical experiments, at least when both E, and E,,, are eigenvalues 
corresponding to phase space tori (Lawton and Child 1981, Davis and Heller 1981). 

A possible form for A E  as a function of h is 

A E  = A  (1.2) 
where S is a constant and A may have a power law dependence on h ;  this expression 
is not analytic at h = 0, and its Taylor expansion about this point is identically zero. 
It has been conjectured that A E  is of this form, and results from tunnelling between 
the two tori in phase space (Lawton and Child 1981), but this has never been adequately 
tested by numerical experiments. This paper reports calculations of A E  for a fixed 
pair of tori I , ,  12, and they are consistent with the tunnelling conjecture (1.2), with A 
proportional to h3’2. 

This tunnelling effect is very different from most of the familiar examples of quantum 
mechanical tunnelling, which invole tunnelling through a classically forbidden region 
between two separate regions of coordinate space. The EBK quantised tori do not 
intersect in phase space (except at complex values of the coordinates), but their 
projections onto coordinate space will usually overlap, and there is no spatial separation 
of the two wavefunctions which participate in the tunnelling process. 

The Hamiltonian chosen for this investigation was of the form H = Ho(A)  + EH, ,  
where Ha is exactly integrable for all A, and E H ,  is aAperturbation which makes the 
system quasi-integrable. The quantum Hamiltonian Ho( A )  is also exactly integrable 
for all A, i.e. the-constant of moJion- K can be represented by an operator I? which 
commutes with Ho( A ) exactly: [ H o ,  K ]  = 0. This symmetry of Go( A ) implies that when 
E = 0 eigenvalues can cross as A is varied, i.e. A E  = 0. It is natural to suppose that A E  
vanishes when E = 0 because the prefactor A in (1.2) vanishes. A theoretical analysis 
suggests that this is not the case, but rather A E  vanishes because the tunnelling action 
S diverges logarithmically as E + 0 (Wilkinson 1986). The action for tunnelling between 
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two EBK quantised states was estimated for several values of E, and the results are 
consistent with the relation 

S = - C l n E  (1.3) 

where C is a constant. 

will obey a power law in the limit E +0:  
Equation (1.3) suggests that if we calculate A E  as a function of E with h fixed, it 

AE = ( Y E " .  (1.4) 

The numerical results are consistent with (1.4) being satisfied with integer values of 
v, which are different for different pairs of states. A rule was formulated for determining 
v, and the origin of this rule is explained using perturbation theory. 

Section 2 will introduce the model system used for these calculations. Section 3 
will present the numerical results and § 4 is a conclusion. The origin of the rule for 
obtaining the integer exponents v is explained in an appendix. 

2. The model Hamiltonian 

A set of N interacting spins { s t u ) } ,  described by a Hamiltonian H(s ' " ,  . . . , s"'), obeys 
the classical equations of motion 

The magnitudes of the spins are conserved, so that the motion is confined to a 
2N-dimensional manifold which is the product of N spheres. Also, it can be shown 
that the flow defined by (2.1) preserves a volume element on this manifold, and is 
therefore equivalent to a Hamiltonian flow in a phase space with N coordinates and 
N momenta. Spin systems can therefore be used as models for Hamiltonian systems, 
and in semiclassical quantum mechanics there is a considerable advantage in doing 
this. Because the phase space is a compact manifold, it is possible to use a complete 
finite-dimensional basis to represent the state of the corresponding quantum system, 
and the Hamiltonian can therefore be represented exactly by a finite-dimensional 
matrix. Because it is not necessary to use a truncated basis set, all the eigenvalues 
obtained by diagonalising the Hamiltonian matrix are meaningful, and their accuracy 
is limited only by that of the computer program (Feingold and Peres 1983). For these 
reasons a spin system was used as the model for this study. 

The system cho2en has ,an integrable component f i o ( A )  and a non-integrable 
perturbation: fi = Ho( A ) + &HI. The integrable component was 

where $,, i2 are two spins of spin j and s = m. This Hamiltonian represents two 
spins interacting isotropically and with an external magnetic field of strength A. The 
factors involving s are included so that all terms are of order unity in the classical 
limit, j + 00. For most of the numerical work the perturbing Hamiltonian was 

A, = s*1xs*22x (2.3) 
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which corresponds to making the interaction between the spins anisotropic. For some 
of the trials a different perturbation was used: 

A; = S ( i I ,  - & x )  (2.4) 

which makes the external field applied to each spin point in a different direction. For 
both choices of the perturbation it was verified by integrating (2.1) that the correspond- 
ing classical motion was of the KAY type. 

The unperturbed Hamiltonian Ho( A ) is exactly integrable quantum mechanically 
as well as classically; the eigenvalues of (2.2) are 

E j , M  = (l/s’)[;J(J+ I ) + h s M  -s’] (2.5) 

where J and M vary by integer increments in the ranges 

- 2 j S J ~ 2 j  - J < M S J  (2.6) 

(Landau and Lifshitz 1958). Comparing (2.5) with the EBK quantisation condition, 
we find that the effective Planck’s constant in this problem is 

27rfi = I / S  = [ j ( j +  I)]-’’’ 

H ( z ~ ,  I,,,, = f ~ :  + A I M  - 1 

(2.7) 

that H ( I )  is 

(2.8) 

and that the Maslov indices associated with ZJ, ZM are 2 and 0 respectively. The angle 
variables O M ,  0, associated with the actions IMr IJ describe respectively the precession 
of the spins about their resultant and the precession of this resultant about the externally 
applied field. 

It is important for the theoretical discussion in the appendix to express the perturba- 
tions H I ,  H i  in terms of the action-angle variables. The first step is to express the 
unit vectors sl, s2 in terms of action-angle variables. After some manipulation of 
rotation matrices, we find 

cos 9 sin ,y cos O M  cos 0, -sin ,y sin O M  cos eJ +cos x sin 6 COS eM 
SI = f;;) = ( cos Q sin x sin OM cos 0, +sin ,y cos OM sin 0, +cos x sin 8 sin OM 

-sin Q sin ,y cos 0, +cos cp c o s x  

where 

(2.9) 
1 

(2.10) 1 2  cos 9 = f I M  IIJ-l=COs2$. 

The expression for s2 is the same, except that OM is shifted by 7. Using (2.9) we find 

HI = cos2 ,y sin’ cp cos2 OM + 2 sin’ ,y cos cp cos OM sin OM cos’ 0, 

- sin’ x cos’ Q cos’ e,,,, cos’ e, -sin2 x sin’ O M  cos’ e, (2.1 1) 

and 

HI =2(cos x sin x cos OM cos 0, -sin ,y sin OM cos 8, +cos ,y sin Q cos e&,), (2.12) 

Finally, we c2mment on the symmetries of the model system. When the perturbation 
fi, is applied to H o ( h ) ,  there remain two discrete two-fold symmetries: there is symmetry 
under exchange of the spins, and also a less obvious symmetry: if we express the 
Hamiltonian in the basis Im,, m2) of eigenstates of s*,, and & z ,  we find that only states 
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with the same parity of M = m, + m2 are coupled. Because of these symmetries the 
Hamiltonian matrix of dimension (2 j  + 1)* decomposes into four block-diagonal parts 
of roughly equal size. The eigenvalues in different symmetry classes can cross each 
other as A is varied; only pairs of eigenvalues within a symmetry class exhibit avoided 
crossings. The othe; perturbing Hamiltonian, Hi, also does not completely remove 
the symmetries of H,; in this case the Hamiltonian only has one discrete symmetry, 
under the operation of simultaneously exchanging and reversing the sign of both spins. 

3. Numerical experiments 

Two series of numerical experiments were performed. One was intended to test the 
tunnelling conjecture, and examined the dependence of A E  on h (i.e. the spin j )  and 
E for a fixed pair of tori, Z, and Z2. The other was an investigation of the perturbation 
theory of the system, and examined AE as a function of E with h fixed, for various 
pairs of states. 

3.1. Investigation of tunnelling efects 

In these experiments A E  was computed for a pair of states with quantum numbers 
n,, n, proportional to j: 

( 3 . 1 )  

where j, the spin of s1  and s2,  took even integer values from 2 to 16. This corresponds 
to looking at AE for a fixed pair of tori I , ,  Z2 at various values of h. 

The results are presented in table 1. For all values of E ,  the position of the avoided 
crossing in ( E ,  A )  space tended toward a well defined limit ( E * ,  A *) as J + CO. This is 

Table 1. Values of A E  for avoided crossing between states nI = ( J l ,  M I )  = ( g , O )  and 

perturbation was ~ s ^ , , < ~ ~ ; .  In the limit j + m ,  the position of the avoided crossing in ( E ,  A )  
space tends toward ( E * ,  A *). Most values of A E  are much smaller than the mean separation 
of eigenvalues, 6. Some values of P E  are absent because they were too small to be computed 
reliably (a), or because the avoided crossing was not well separated from other avoided 
crossings (b) .  

-(i' - d, - j )  for various even integer values of the spin j. For all entries in this table the 

E 

0 0.05 0.1 0.2 0.3 0.4 0.5 0.7 6 

j 2  
4 
6 
8 

10 
12 
14 
16 

E* 
A *  

7 
- B  

1 

0.009 24 0.018 7 0.038 2 0.058 3 0.079 2 0.101 0.145 0.35 
0.000 404 0.001 60 0.006 09 0.012 8 0.021 2 0.030 7 0.052 2 0.1 1 
0.000 0201 0.000 158 0.001 19 0.003 63 0.007 60 0.012 9 0.026 6 0.051 
a 0.000 0168 0.000 248 0.001 11 0.003 00 0.006 01 0.015 4 0.029 
a a 0.000 0542 0,000 356 0.001 24 0.003 45 0.007 96 0.019 
a a a 0.000 118 0.000 487 0.001 56 b 0.014 
a a a 0.000 0348 0.000 230 0.000 802 0.004 01 0.010 
a a a 0.000 0136 0.000 103 0.000 302 0.002 82 0.0078 

-0.88 -0.89 -0.90 -0.918 -0.931 -0.94 -0.97 
1.013 1.021 1.038 1.054 1.070 1.082 1.101 
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strong evidence that the states correspond to classical tori, and that their energies could 
be predicted by the EBK quantisation rule. In most cases the gap A E  at the avoided 
crossing is much smaller than the mean separation of energy levels 6 within the 
symmetry class (which was calculated analytically using the Weyl rule at E = 0). 

Theoretical arguments suggest that the prefactor A of (1.2) is proportional to h3l2  
(Wilkinson 1986). Accordingly, h ~ ( h - ~ ' ~ h E )  was plotted against s = 1/27rh for 
different values of E. For values of E less than 0.5 a straight line is obtained at large 
values of s, corresponding to j 2 6. This supports both the tunnelling conjecture and 
the prediction that the prefactor is proportional to h3/2. The slope of this line is -27rS, 
where S is the action for tunnelling between the pair of tori Z, = (4, 0), Z2 = (i, -1). For 
values of E greater than or equal to 0.5, the results are slightly erratic, and do not quite 
fit a straight line. This could be due to the onset of the breakdown of the phase space 
tori at large values of the perturbation parameter E. 

Table 2 lists the values of the tunnelling action S deduced from the straight line 
fits to the data plotted in figure 2. There is no indication that S tends toward a limit 
as E + 0, and theoretical arguments (Wilkinson 1986) suggest that S should diverge 
logarithmically as E + O .  Figure 3 is a plot of S against In E, and the data are fitted 
reasonably well by a straight line, supporting this prediction. The constant of propor- 
tionality C in (1.3) was estimated to be C = 7.75 x from the straight line in 
figure 3. 

From the data in table 1, we can see ghat for most of the avoided crossings, the 
energy E* is shifted from its unperturbed value at E = 0 by an amount which exceeds 
the mean level spacing 6. This shows that the results describe a regime in which 
perturbation theory is not applicable, and is therefore further evidence that they are 
indicative of a tunnelling effect. 

Table 2. The tunnelling action, S, between the tori I ,  = (i, 0 ) ,  I ,  = ($, - I ) ,  for various values 
of E .  The results for E =0.5 and 0.7 should be considered less reliable, because the data 
showed some scatter (see figure 2) .  

E S 

0.2 0.093 
0.3 0.065 
0.4 0.047 
0.5 0.034 
0.7 0.014 

3.2. Investigation of perturbation theory 

In these experiments A E  was computed as a function of E with h held fixed, for 
avoided crossings between various pairs of states. Some representative results are 
given in table 3. The results fit a power law, A E  = a&", and with one exception values 
of v were found to be very close to integers (see figure 4). 

The exponent v was found for several avoided crossings, and the results are listed 
in table 4. Most of these results are for the perturbation fi, given by (2.3), but some 
results are also included for the perturbation fi{ (2.4). A rule was formulated which 
relates U to the quantum numbers n,  = ( J ,  , MI) and n2 = ( J 2 ,  M 2 )  of the pair of states 
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Figure 2. Plot of ln (K3’ ’AE)  against s =-is= 1/27rh, for various values of E .  The 
data fit a straight line for s 6 ,  and the slope of this line is -2nS, where S is the tunnelling 
action. For values of E up to 0.4 this fit is to within the error in the data, but for the largest 
two values of E there is some scatter. 
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Table 3, Values of A €  as a function of E for avoided crossings between various pairs of 
states with quantum numbers nI = (JI , MI) ,  n2 = ( J 2 ,  M 2 ) .  The column labelled HI indicates 
which perturbation was used: the perturbation ~ i , ~ i ~ ~  is indicated by (a )  and E S ( S I ~ ,  -SI2 , , )  
by (b). The results fit the power law A €  = a€”, and usually the value of v is very close to 
an integer. 

j J l  MI J2 M, HI E =0.0125 E =0.025 E = 0.05 E =0.075 E = O . l  E =0.2 E =0.4 b 

4 2  0 6 - 4 a  - - 0.000404 - 0.001 60 0.00609 0.021 2 1.96 
4 6  4 8 O a  - - 0.0000078 - 0.000 0312 0,000 128 0.000 538 2.04 
4 2  2 6 - 4 a  - - - - 0.000 0073 0.000 0928 0.001 061 3.59 
4 2 0 6 -4 h 0.0000111 0,000 172 0.00238 0.009 16 - - - 3.88 

1.96 

-5 1 v.3.80 /’ 

/ 

3 59 

2 04 

-10 / 
,/ ’ 

In E 

Figure 4. Plot of In A €  against In E for the data in table 3. The slopes Y of these lines 
usually have values very close to integers. 

Table 4. Observed and predicted values of the exponent Y for avoided crossings between 
various pairs of states n I  = ( J l ,  MI), n2 = (J2, M 2 ) .  The column labelled HI indicates 
whether the perturbation applied was F S * , , S ^ ~ ~  (a )  or ~s( i , . - -S1~,)  (b) .  

J l  MI J 2  M2 HI Vobr ’pred 

-4 
-4 
-4 
-6 

0 
-4 
-2 
-6 
-2 

2.90 3 
3.88 4 
1.96 2 
2.94 3 
2.04 2 
3.59 3 
2.09 2 
2.83 3 
1.79 2 
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involved in the avoided crossing, and to the functional form of the perturbation. The 
first step is to express the perturbation H, or Hi in action-angle variables; this was 
done in 5 2 ,  and the results are (2.11) and (2.12). The Fourier coefficients of the angle 
variables can be represented as points on a lattice, k = ( k J ,  Iqw), and the non-vanishing 
Fourier coefficients are considered to link points on this lattice separated by a vector 
k.  These linkages are illustrated in figure 5 for the two perturbations considered. The 
rule for calculating v is as follows: we represent the quantum numbers n,, n, as points 
on a lattice, and find the minimum number of linkages required to connect them. This 
minimum number is the exponent v. The use of this construction is illustrated in figure 
6. This rule predicts v correctly for all of the avoided crossings listed in table 4, except 
for the sixth entry, where v was not close to an integer. 

(a ) . . , . . . . . 
e--. . . . . 

I .  c 

1 J 

I J 

Figure 5. Linkages on the action lattice defined by the perturbation I?,: ( a )  A, = ?ly?2y,  

( b  j A, = s(?, ~ - ?>, 1. 

4. Conclusion 

The results presented in § 3.1 generally support the hypothesis that the gaps in avoided 
crossings between E B K  quantised states in KAM systems are due to a tunnelling effect. 
They also support theoretical predictions (Wilkinson 1986) that the prefactor is propor- 
tional to h3’* for systems with two degrees of freedom, and  that S diverges logarithmi- 
cally as a parameter is varied which makes the system exactly integrable. 

The only aspect of the results which is not fully in accord with these predictions 
is that for the largest two values of E (0.5 and 0.7), the data plotted in figure 2 did not 
fit a straight line exactly, although they show the correct trend. This may be due to 
the onset of breakdown of the KAM tori for large values of the perturbation parameter 
E, but the results did not show any other signs of this; for instance the position of the 
avoided crossing still appears to converge to a well defined limit ( E * ,  A * )  as j +  CO. It 
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I . . . . . . . . . .  
M I  . . . . . . .  (b l  y . . .  . . .  

. . . .  

. . . . . . .  

Figure 6 .  Illustrating the calculation of Y by counting the minimum number of linkages 
required to join the states n ,  and nz on the action lattice. The two examples correspond 
to ( a )  the first and ( b )  the second entry in table 4. 

is quite possible, however, that the tunnelling effect is much more sensitive to the onset 
of breakdown of the tori than is the E B K  quantisation condition, which determines the 
position of the avoided crossing. 

Theoretical analysis of the tunnelling problem (Wilkinson 1986) shows that the 
tunnelling action diverges logarithmically as the perturbation parameter E tends to 
zero. It turns out to be impossible to calculate the prefactor, C, of this logarithmic 
dependence in the framework of tunnelling theory, however. The fact that S diverges 
logarithmically shows that A €  has a power law dependence on E.  It is found that the 
exponent v = C / h  usually takes values very close to integers, and a rule was given for 
determining these integers. The rule for determining v can be explained by a perturba- 
tion theory, closely related to that used to calculate band gaps in the nearly-free electron 
limit in solid state physics. This is described in the appendix. 
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Appendix 

This appendix explains the origin of the rule given in 0 3.2 for determining the integer 
exponents v using perturbation theory. As it stands, this is just a heuristic argument, 
and is not intended to be rigorous. 

The classical Hamiltonian H ( s , ,  s2) can be expressed in action-angle variables: 

H ( I ,  e) = H , ( I )  + & H , ( I ,  e) ('41 1 



Narrowly avoided crossings 645 

where the expressions for H , ( I )  and H , ( I ,  8 )  are given by (2.8) and (2.11) or (2.12) 
(depending on which perturbation is used). 

The Hamiltonian ( A l )  is now quantised by replacing I,  8 by operators i, 6, satisfying 
[ 6, I ]  = ih. We use the representation 

d +  e I +  - ih  alae. (‘42) 

In order to reproduce the Maslov indices of the true Hamiltonian we must require 
that the wavefunction +(e,, e,) be periodic in 0, but antiperiodic in e,: 

-+(e, + 2 n ,  6,) = +(e,, e,) = w,, e, +w. ( A 3 )  

Of course, the Hamiltonian 2 = H ( f ,  d)  will not be exactly equivalent to the true 
quantum Hamiltonian. 

In this representation, the problem of determining the gaps in the avoided crossings 
is clearly very similar to that of determining the band gaps in the nearly-free electron 
problem in solid state physics. The action Z is a good quantum number for the 
unperturbed system, and because of ( A 2 )  it plays the role of the Bloch quasimomentum. 
The perturbation EH,( I,  6) is a periodic function of 8, and is analogous to the periodic 
potential. The Fourier component of HI( I, 8 )  with wavevector n causes Bragg scattering 
in action space through a vector 27“ .  The band gap which opens up is of size O ( E ” ) ,  
where v is the minimum number of Bragg scatterings needed to scatter a wave of 
momentum I ,  into one of momentum I * .  This is precisely the rule stated in § 3.2 for 
calculating v. Note that this theory depends on the perturbation having only a finite 
number of non-vanishing Fourier coefficients. 
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